

第二章 安装工程计量

本节内容:

- 1. 安装工程图形算量
- 2. BIM技术在安装工程中的应用

2.4.1 安装工程图形算量

现阶段的安装工程图形算量己进入全面应用阶段,各家在算量的 流程和应用上都是一致的,就整体的算量应用流程来看,可分为两大 类,一类是数个数的数量级工程量,一类是量长度的长度级工程量。

建筑安装工程包含电气安装工程、给水排水、采暖、燃气工程、 通风空调工程、消防工程等。以电气照明及动力工程为例,电气照明 及动力工程包含电气照明工程和动力工程等; 以电气照明工程为例, 包含照明灯具、开关、插座、配电箱、桥架、电线、电管等工程内容, 最终套取江苏地区清单和定额内容。

- 1. 新建工程
- 2. 工程设置
- 3. 绘图输入
 - (1) 图纸管理
 - (2) 阅读设计说明信息及了解材料表相关内容
 - (3) 识别材料表
 - (4) 切换楼层
 - (5) 图例识别
 - (6) 计算桥架
 - (7) 设置起点
 - (8) 回路识别
 - (9) 选择起点

- 4. 汇总计算
- 5. 集中套用做法

2.4.2 BIM技术在安装工程中的应用

BIM是英文 Building Information Modeling的缩写,代表建筑 信息模型化或建筑信息模型。BIM技术即关于建筑信息模型化和建筑 信息模型的技术。其基本理念是,以基于三维几何模型、包含其他信 息和支持开放式标准的建筑信息为基础,提供更加强有力的软件,提 高建筑工程的规划、设计、施工管理以及运行和维护的效率和水平; 实现建筑全生命期信息共享(图 2-32),从而实现建筑全生命期成本 等关键方面的优化。

- 1. BIM技术的起源
- 2. BIM的特点

BIM具有可视化、协调性、模拟性、优化性和可出图性五大特点。

- 3. BIM技术应用前景
- BIM技术将有很好的应用前景。归纳为以下三个方面:
 - (1) 对于新建筑,运用BIM技术将成为一种范式。
- (2) 对于既有建筑,也将率先实现BIM技术应用与传统CAD技术 应用的对接。
- (3) BIM技术将在数字城市建设、基础设施建设等方面起到重要 作用

- 4. BIM在全过程造价管理中的应用
 - (1) BIM在投资决策阶段的应用

投资决策阶段是建设项目最关键的一个阶段,它对项目工程造价 的影响高达80%~90%。利用BIM技术,可以通过相关的造价信息以 及BIM数据模型来比较精确地预估不可预见费用,减少风险,从而更 加准确地确定投资估算。在进行多方案比选时,还可以通BIM进行方 案的造价对比,选择更合理的方案。

(2) BIM在设计阶段的应用

设计阶段对整个项目工程造价管理有十分重要的影响。

在设计交底和图纸审查时,通过BIM技术,可以将与图纸相关的 各个内容汇总到BIM平台进行审核。利用BIM的可视化模拟功能,进 行模拟、碰撞检查,减少设计失误,降低因设计错误或设计冲突导致 的返工费用,实现设计方案在经济和技术上的最优。

(3) BIM在招投标阶段的应用

BIM技术的推广与应用,极大地促进了招投标管理的精细化程度 和管理水平。招标单位通过BIM模型可以准确计算出招标所需的工程 量,编制招标文件,最大限度地减少施工阶段因工程量问题产生的纠 纷。投标单位的经济标是基于较为准确的模型工程量清单基础上制订 的,同时可以利用BIM模型进一步完善施工组织设计,进行重大施工 方案预演,做出较为优质的技术标,从而综合有效地制订本单位的投 标策略,提高中标率。

(4) BIM在施工阶段的应用

在进度款支付时, 往往会因为数据难统一而花费大量的时间精力, 利用BIM技术中的5D模型可以直观地反映不同建设时间点的工程量完 成情况,并及时进行调整。BIM可以将招投标文件、工程量清单、进 度审核预算等进行汇总,便于成本测算和工程款的支付。另外,利用 BIM技术的虚拟碰撞检查,可以在施工前发现并解决碰撞问题,有效 地减少变更次数,控制工程成本、加快工程进度。

(5) BIM在竣工验收阶段的应用

传统模式下的竣工验收阶段,造价人员需要核对工程量,重新整 理资料,计算细化到柱、梁,并且由于造价人员的经验水平和计算逻 辑不尽相同,从而在对量过程中经常产生争议。

BIM模型可以将前几个阶段的量价信息进行汇总,真实完整地记 录此过程中发生的各项数据,提高工程结算效率并更好地控制建造成 本。

- 5. 碰撞检测案例
 - (1) 检测碰撞
 - (2) 调整碰撞

感谢狐看

请继续关注,精彩课程内容待续......